Categories
Red Planet Pen

Life on Mars (Issue #29)

by: Nicole Willett

pia16453-43Throughout history, humans have looked at Mars in wonder and have made up myths, legends and science fiction stories about civilizations. When Mariner flew by Mars in 1965 hopes for finding a thriving civilization on the Red Planet were quickly dashed by the 22 postage stamp sized images that slowly trickled back to Earth. The images showed a barren, rocky terrain. For many though, their passion of finding out more details kept the interest in finding life on Mars alive. In 1976 a life detecting experiment invented by Dr. Gil Levin was sent on the Viking I and II Landers to investigate whether microbial life existed in the soil on Mars.

Viking LRLevin named his experiment Gulliver, but it was renamed by NASA to the Labeled Release (LR) experiment.  Viking I and Viking II, which were 4,000 miles away from each other, both carried the LR. A brief summary of the LR is as follows; first a sample of Martian soil is scooped up and sent into a thimble-sized chamber, then a tiny drop of nutrient containing radioactive 14C is squirted onto the soil sample, and, if microorganisms are present, they will consume the nutrient and then give off radioactive gas.  When the LR was performed on the surface of Mars, after the first squirt of nutrient was added onto the soil gas immediately began to come off.  A spike was seen on the graph tracing the gas, with a growing curve indicating a positive result for life. The gas that was released by this experiment kept slowly evolving for the entire seven days the LR was run. In order to verify the results a control experiment had been designed by NASA. The control was LR2 graphdesigned to determine whether the result was chemical or biological. The control had a negative result indicating thepositive response was from life. This is because chemistry could not “die” from the modest heat imposed by the control experiment, but a living organism could. Since the control came back negative and the LR was positive, it can be ascertained that there is life on Mars. Thus the LR detected life on Mars according to the criteria set by the Viking team and NASA. Viking I and II both had a positive result for life with the LR experiment. Several different life detecting or life-related experiments were in the payload of Viking. Each one had different degree of sensitivity. The LR was the only test that was positive for life, but it was much more sensitive than the others. The LR was able to detect as few as 20 bacterial cells in its development tests.  The other experiments were orders of magnitude less sensitive which easily explains why they were negative versus the positive results of the LR.

LR imageThe Gas Exchange (GEX) and the Pyrolytic Release Experiment (PR), the other life detections tests, failed to detect life in the soils of Mars.  When another experiment failed to find any organic matter in the Martian soil, NASA made a consensus that there was no life on the Red Planet. However, science does not work by consensus. Science is supposed to review any postitive or indicative results and retest them. That is the scientific method every third grader in America learns. Scientists must retest their experiment to get accurate results. If one out of three tests is positive, then you must rerun the positive experiment to get an accurate result. What scientists should not do is stop sending life detection experiments to Mars because their results are deemed ambiguous. NASA has refused to send any other life detection experiments to Mars since then. That is not science. Each time Levin has proposed a new life detection experiment to go to Mars, he has been denied. NASA keeps stating that they are looking for habitats that might have supported life long ago.  Nest they say they will look for “biosignatures” of long extinct life. If we had the technology to search for existing life on Mars in 1976, what is stopping us from looking for exixting life on Mars now? We have learned so much more about the Red Planet since then, it should be a slam dunk to send a convincing life detection device to Mars.

Each successive mission to Mars has discovered that Mars definitely has two things, rocks and water. The Viking missions (1976), the Pathfinder and Sojourner Rover (1997), Spirit (2004-2010) and Opportunity Rovers (2004-currently operational), Phoenix Lander (2008), and Curiosity (2012-currently operational) have all confirmed many times over that there are water and rocks on Mars. This has taken nearly 40 years to accomplish, even though we acquired that information with the Viking missions.  The next rover, with a working name of Mars 2020, is to be very similar to Curiosity with the addition of a cache to store rock samples in. This cache will be stored on Mars until a later date when another rover or humans (as a NASA scientists stated tongue and cheek) will launch it back to Earth, as a sample return, for further study. But how do they know any Martian life will survive the six to nine-month trip to Earth when we don’t know what they eat, breathe or what environment they need?  And, if they do survive, might they be harmful?  Bad idea!  According to MIT planetary scientist, Dr. Ben Weiss, about one ton per year of Martian meteorites fall to Earth, which over time equals billions of tons of rocks from Mars have arrived on Earth. He states, as do others, “It is possible we are Martians.” Since that is the case, what is the purpose of sending another rover very similar to Curiosity to blog 22 MarsAsteroidImpactMars to store a cache of rocks on the surface for an unknown amount of time?

This is a perplexing set of facts. So many issues arise with this plan. Such as, contamination upon reentry, time of the cache sitting on the surface of Mars, and lack of foresight and appropriate planning. According to Dr. Robert Zubrin, President of the Mars Society, we get samples of rocks from Mars all the time. We have many meteorites from Mars in labs being studied currently. The mission that should be funded is the Icebreaker Life mission. This mission will have a one meter long drill that will peer below the surface of Mars specifically searching for conclusive evidence of life. (see Issue # 21 for more details) In an email from Dr. Chris McKay he stated, “We are currently working on the Icebreaker mission and we will be proposing it to the current round of Discovery missions. We expect proposals due Dec 2014. We will aim for a 2018 launch.” This is a much more reasonable plan and should have been funded years ago.

Since the controversial Viking results, many scientific journal articles have been published supporting the results while others have attempted to discredit them. Many new experiments have been developed that have supported the LR positive results. At this point it may be a matter of what you choose to believe regarding the LR results. However, science is true whether or not you believe it. I believe there is life on Mars. All of the necessary ingredients are on Mars for life to exist. Mars has ample amounts of water, minerals, and other chemical nutrients in the soil. Habitability has been established and reestablished. The question is, “Do we want to find life on Mars?” It depends who you ask.

 

A special thank you to Dr. Gil Levin for his years of dedication and hard work on this subject and for his generous time and assistance with this blog.

[Images: NASA, Levin, Astrobio.net]

Categories
2013 Mars Society Convention Inspiration Mars Red Planet Pen Speaking Engagements TMS Conventions University Rover Youth Rover

The Mars Society Latest Events and Programs-Get Involved!!! (Issue #27)

By: Nicole Willett and The Mars Society

Mars Society Logo (High quality)Annual conventions have become a staple of The Mars Society.  Many leading scientists, researchers, and entrepreneurs hold plenary talks and participate in panel discussions regarding many aspects of the human exploration and settlement of the Red Planet.  The 17th Annual Mars Society Convention will be held from August 7-10, 2014 in the Houston area in League City, Texas (near NASA’s Johnson Space Center).  The convention will be at the South Shore Harbour Resort.

The Mars Society invites presentations for the 17th Annual International Mars Society Convention. Subjects for discussion can involve all matters associated with the exploration and settlement of the planet Mars, including science, technology, engineering, politics, economics, public policy, etc.

If you would like to submit an abstract to be considered for a presentation at the convention you may email your submission here.  Email is preferred, however you may mail your submission to The Mars Society, 11111 West 8th Avenue, Unit A, Lakewood, CO 80215 .  The submissions are to be no more than 300 words and must be submitted by June 30th. A few of the proposed conference sessions are:

  • The search for life on Mars
  • Latest findings from Mars spacecraft
  • Why Mars?
  • Plans for 2014 Mars missions and beyond
  • Curiosity rover – research & accomplishments
  • Concepts for future robotic Mars missions
  • For further details and a full list of conference sessions, click here.

The convention is open to the general public and everyone is encouraged to attend.  The four-day event will bring together key experts, scientists, policymakers and journalists to discuss the latest news on Mars exploration and efforts to promote a human mission to the Red Planet in the coming years.   To register for the event click here.

YoutubeIf you would like to view some of the presentations from previous years, please visit the Mars Society Channel on Youtube.   You will see previous Mars Pioneer Award winners and their keynote address.  The recipient for the 2012 award was Elon Musk, founder of SpaceX and Tesla motors.   Musk passionately discussed the importance of a humans to Mars mission and how and why it should be done.  The 2013 recipient was Dr. Steve Squyres, the Principal Investigator for the Mars Exploration Rover Spirit and Opportunity.  Dr. Squyres gave a wonderful update on the Opportunity Rover and an entertaining history of the MER program.

Insp mars shipAt the 16th Annual Mars Society Convention, Dennis Tito, founder of Inspiration Mars, announced an international engineering competition for student teams to propose design concepts for the architecture of the Inspiration Mars mission. The contest is open to university engineering student teams from anywhere in the world. Inspiration Mars Executive Director Dennis Tito and Program Manager Taber MacCallum were present for the announcement. “Inspiration Mars is looking for the most creative ideas from engineers all over the world,” said Tito. “Furthermore, we want to engage the explorers of tomorrow with a real and exciting mission, and demonstrate what a powerful force space exploration can be in inspiring young people to develop their talent. This contest will accomplish both of those objectives.”  The requirement is to design a two-person Mars flyby mission for 2018 as cheaply, safely and simply as possible. All other design variables are open. The Mars Society’s Inspiration Mars International Student Design Competition has drawn a massive worldwide response. As of the January 31, 2014 deadline, letters of intent to compete have been received from 38 teams representing 56 universities in 15 countries. Nations represented include the United States, Canada, Russia, the Netherlands, Germany, Austria, Italy, the United Kingdom, Portugal, Poland, Mauritius, India, Bangladesh, Japan and Colombia. A sampling of some of the institutions signed up to participate include: John Hopkins University, St. Petersburg State Polytechnical University, Ohio State University, Warsaw University of Technology, University of Notre Dame, Indira Gandhi National Open University, York University, International Space University, Purdue University, Islamic University of Technology, University of Stuttgart, Keio University, and University of Glasgow.

 

URC2The University Rover Challenge (URC) is a robotic rover design competition that encourages college students to create rovers using guidelines set by The Mars Society.  URC teams are currently working on their rovers.  The seventh annual rendition of the international competition for college students is organized by The Mars Society and will be held May 30 – June 1, 2013 at the Mars Desert Research Station (MDRS) near Hanksville, Utah.  This unique and renowned competition has hosted dozens of college teams since 2007 in a barren landscape that is an ideal analog of the planet Mars. The MDRS site is also home to human crews conducting mission simulations that test a broad range of Mars exploration topics. URC rovers are designed and built to one day assist astronauts on the Red Planet. The URC has a record 31 teams this year!  Click here for more information on how you can join the URC.

YRC2The Youth Rover Challenge (YRC) is a multi-tier robotics education development program that is hosted, sponsored and operated by The Mars Society. The program commenced on August 6th, 2013 to commemorate the one year anniversary of the landing of NASA’s Curiosity Rover. YRC is a STEM related educational effort that is designed for schools and organizations with students or members in grades 5-12 to have the chance to build and compete at a global level with a LEGO Mindstorms NXT 2.0 based robotic rover and competition arena intended to simulate the surface of Mars. The YRC has 26 teams registered for this year’s competition. For more information visit the Youth Rover site or email Deputy Director Chuck McMurray.

 

The Education Forum continues its outreach efforts by hosting speaking engagements in person or via the web.  If you would like to schedule an event for your class, troop, astronomy club, or other organization, please contact Education Director Nicole Willett.  The talks range from 30 minutes to an hour.  The purpose is to educate the public to our place in the universe and the importance of the human exploration and settlement of the planet Mars.  To see a list of previous events and accompanying images please click here.

Join The Mars Society Today and Help Play a Role in

Humanity’s Next Step into the Solar System!

All Mars Society members receive:

+ An official membership card

+ Regular Mars Society email updates & announcements

+ The Mars Quarterly online magazine

+ An opportunity to participate in local Mars Society chapter events & activities

+ A special invitation & discount to the International Mars Society Convention

+ Special access to exclusive online chats, webinars & discussions with leading Mars experts

Join The Mars Society NOW!

[Images: The Mars Society, Youtube, Inspiration Mars]

Categories
Curiosity Guest Blogs Humans to Mars Inspiration Mars NASA & JPL Red Planet Pen

Understanding the Risks: Radiation Exposure During Interplanetary Travel (Issue #26)

Guest blog by Kathryn Sharp

RadiationRecent years have seen an exciting uptick in the number of humans-to-Mars mission plans, from manned fly-bys to permanent settlements. Each lays out its own priorities and objectives, suggesting creative solutions to challenges common to all of them. One important challenge each mission will face is the danger of space radiation exposure over the course of lengthy interplanetary travel.

There are two major types of radiation: ionizing and non-ionizing. Many forms of nonionizing radiation will sound familiar: your car radio, cell phone, microwave, all of which operate at frequencies low enough that their energy isn’t sufficient to damage human DNA. These are therefore not considered to be carcinogenic, or cancer-causing. On the other hand, ionizing radiation carries energy high enough to break chemical bonds and damage DNA, which in turn increases the risk of developing cancer. Some examples include medical X-rays and CT scans, which, when used infrequently, do not significantly increase cancer risk, and radioactivity remaining from the era of atmospheric nuclear testing.

Insp mars shipOf course, these are only man-made sources of radiation. The sun showers the Earth every moment with both ionizing and non-ionizing radiation. Thankfully, our protective atmosphere and magnetosphere shield us from a majority of the harmful radiation, with only some UV rays reaching the surface. Beyond our atmosphere however, solar energetic particles (SEPs), ejected from the sun by solar flares and coronal mass ejections, as well as galactic cosmic rays (GCRs) from interstellar space blast through our solar system unmitigated.

In space, astronauts face much higher radiation exposure from these sources than we do down here on the surface. On average, an astronaut on the International Space Station (ISS) will receive as much radiation in one six-month stay as they would in twenty years back home on Earth. As humans venture beyond low-Earth orbit and the sheltering bands of Earth’s magnetic field, their lives will depend on proper shielding in their spacecraft.

ss-121109-mars-curiosity-tease.photoblog900In 2011, when the Mars Science Laboratory (MSL) Curiosity Rover launched from Cape Canaveral it carried with it a small instrument for measuring space radiation in a shielded environment similar to that of a manned mission. Based on the measurements of the unit called the Radiation Assessment Detector (RAD), Marsonauts would receive a dose equivalent of roughly 0.6 Sieverts (Sv) in 360 days of travel to-and-from Mars, not counting any radiation received while operating on the surface of Mars itself. This dose is akin to receiving 1 to 2 abdominal CT scans each week over the course of a year.

Currently, NASA limits the cumulative lifetime dose for its astronauts at 1 Sievert. This dose is associated with a roughly 5% increase in lifetime cancer risk. For reference, the current lifetime risk of dying of cancer for someone in the US is around 20%, so a dose of 1 Sv would raise this risk from 20 to 25%. While 0.6 Sieverts is a large dose of radiation in a relatively short period, clearly it is within established limits and should not halt further development of manned missions to Mars.

Although this dose falls within NASA’s established limit, developers of any future crewed Mars mission shoulder the responsibility of sheltering its astronauts and reducing their exposure to the lowest levels possible. How can we limit the radiation dose to Marsonauts in an efficient and cost-effective way?

victoria2_opportunityThree major factors limit a person’s exposure to radiation: time, distance, and shielding. Limiting the time astronauts are exposed to space radiation is a surefire way to reduce their dose. However, the only way to reduce the time of exposure is to speed up the spacecraft: no easy feat. Existing spacecraft rely on heavy fuels, which in turn lead to heavier payloads, resulting in slower speeds and higher costs. Conceptual space vehicles that rely on other sources of energy, such as nuclear power, are on the drawing board, but waiting through the long development period for such technologies will only further delay a crewed mission.

Because the source of solar energetic particles, the sun, is a fixed source, and because galactic cosmic rays are pervasive throughout the solar system, we cannot significantly increase the distance between the astronauts and the source of the radiation. At this time, the most convincing method of reducing exposure is effective shielding. Unfortunately, different materials are necessary to shield against different types of radiation. For example, high-energy gamma rays require very dense, thick materials, such as lead, to shield, whereas neutrons are best-shielded by hydrogen-rich materials such as concrete. These are both heavy materials that will add significant mass to the payload, requiring more fuel and incidentally, more money.

Current radiation shielding plans minimize the amount of these materials by allowing for a narrow shelter in the center of the spacecraft to be used during large SEP-producing events such as solar flares or coronal mass ejections. The measurements taken by the RAD aboard Curiosity confirmed that this type of arrangement would be sufficient to shield the majority of SEPs, but astronauts would still be vulnerable to, and receive the majority of their dose from, galactic cosmic rays. This constant stream of heavy, high energy particles presents the biggest shielding challenge.

Several mitigation strategies are being considered to reduce the dose from GCRs. We could utilize existing resources aboard the ship, such as the crew’s water or fuel supply, as shielding agents. Water is an excellent shield for GCRs, but it is heavy. A water shield around the crew’s living quarters would need to be several meters thick, and could add hundreds of tons to the payload. This is an insurmountable weight for current mission designs, and would send launch costs skyrocketing.

Alternatively, we could construct the spacecraft from light, hydrogen-rich plastics such as polyethylene rather than the aluminum shell that the ISS employs. This could reduce both the payload weight and cost, but further research is necessary in order to improve the strength and heat tolerance of these materials.  Another theoretical strategy would be to generate a small magnetic field to deflect incoming radiation much the same way Earth’s magnetic field functions. Generating a magnetic field requires energy however, and generating one large enough to shield an entire spacecraft would require considerable energy: a precious commodity when you are 35 million miles from home.

a Mission to Mars Pic 06While all possible ways of limiting radiation exposure ought to be explored, it is important to keep these risks in context. In his book, The Case for Mars, Mars Society President Dr. Robert Zubrin puts these concerns in perspective: “While such doses are not to be recommended to the general public, they represent a small fraction of the total risk of not only space travel, but such common recreations such as mountain climbing or sailboarding. Radiation hazards are not a showstopper for a piloted Mars mission.”

As Zubrin’s statement suggests, we must bear in mind that a manned Mars mission is not a routine endeavor, it is an extraordinary one. Every extraordinary mission in the history of mankind has involved significant risk, and with it, the potential for remarkable reward. We can and should do our best to limit these risks, but must understand that we cannot eliminate them.

 

[Images: publicdomainpictures.net, Inspiration Mars, NASA]

Categories
Curiosity Extreme Organisms Humans to Mars Life on Mars Red Planet Pen Water On Mars

Terraforming Mars (Issue #24)

By:  Nicole Willett

The Sun has an approximate lifespan of ten billion years.  Most scientists believe we are about halfway through that life span.  Recently scientists have stated that the Sun will begin its death throes in about 2.8 billion years.  If humans behave in a way conducive to the health of the planet and themselves, we may still be in existence by then.  If that is the case we must be able to take humanity to a new home.  The Red Planet is a perfect first stop in this process.  He will survive longer than Earth.  But Mars will eventually perish as well.  In that case we must use Mars as a “practice” ground for learning how to take humanity to extrasolar planets in order to spread humanity around the galaxy.

blog 24NASA and other science organizations have been discussing a process called terraforming for a very long time.  Terraform means to make like Earth.  Many proposals have been submitted on the best way to make Mars like Earth.  The timelines proposed have varied from 100 years to 100,000 years.  We must find a balance between moving too fast and too slowly.  If we terrraform too fast, we may end up with a runaway greenhouse effect similar to what we see on Venus.  If we move too slow, we run the risk of other complications, such as the natural rhythms of the Red Planet changing during the process which could interfere and complicate any progress we may be making.  Terraforming Mars is of utmost importance in order to learn to live on other worlds.  Humanity must have the ability to be a multi-planet species in order to preserve Homo sapiens for millions or billions of years.

How could we go about terraforming Mars?  The 1,000 year plan seems to be a reasonable timeline.  If you utilize a version of Dr. Robert Zubrin’s, President and Founder of The Mars Society, Mars Direct plan, we would send up a series of habitats ahead of humans.  An automated system to manufacture fuel on the surface of Mars would be included in the initial payload.  This would allow the visitors to Mars to have a fuel supply ready for the return to Earth at a later date.   Humans would then take the six month trip and each crew would stay for 18 months, some may eventually choose to stay on the Red Planet.   Crews of Marsonauts would have an enormous responsibility to lay the groundwork for future Martians.

blog 24 natgeo3The first visitors would set up the habitat modules and start the greenhouse work.  When each successive group arrives at the initial home base, all necessary groundwork will have been laid for them to immediately begin working on the next set of tasks. This may include creature comforts.  In order for the settlers to feel at home on Mars, the habitats would need to be comfortable and roomy.  We would like the crew to feel at home, which will help with psychological concerns.  The greenhouses must also be a top priority.  COis already present in the atmosphere of Mars for plants to utilize for respiration, and they will return the favor by “exhaling” breathable O2 for the settlers.  Humans may feel depressed and isolated, but the aesthetic value of plants could make them feel more at home.  Plants will also serve as a major source of food which is essential to our survival.  They will also provide oxygen for breathing.  The Curiosity Rover has confirmed that the Martian soil is at least 2% water, so we will be able to heat up buckets of soil and extract water for plants and it must also be used for human consumption.  The H2O can also be divided into hydrogen for fuel and oxygen for breathing when necessary.  After we have perfected plants in greenhouses on the Red Planet, we may be able to allow bacteria and lichens, which are able to survive in arctic environments, to grow on the outside of the habitats and greenhouses.   The rovers on Mars have confirmed that the soil is already conducive to certain types of plants.

blog 24 natgeoNow we are ready for the next set of terraforming duties.  What is needed next is a nice thick and warm atmosphere.  Several suggestions have been proposed as to which approach for this is best.  Ideas have been as varied as giant orbiting mirrors to nuclear explosions and everything in between.  A common suggestion has been to release the CO2 frozen in the soil and in the polar ice caps into the atmosphere using factories spewing out what we consider greenhouse gases on Earth.  Whichever tactic is utilized to thicken the atmosphere, once it is warm enough for the polar ice and ground ice to melt and turn some H2O to liquid and some to gas then we are well on our way to add more complex plant life.  The water cycle should begin to look more Earthlike.  Rivers should start to flow, seas will develop, and rain will fall.  Regular weather patterns will develop and Martian meteorologists will surely scramble to predict weather as they do now on Earth.  Next we will add insects and flowering plants.  The soil will become more enriched with the addition of each more complex organism.  This will allow for the addition of even more complex plants and animals in succession periodically, for instance large trees will allow forests to take hold.

blog 24 natgeo2Energy is a must for the spread of civilization.  It is hoped that we have learned from our mistakes on Earth, and we will use all clean energy with little waste on Mars.  Transportation and city planning systems will be developed.  An entire new branch of humanity will start to evolve on the new Mars.  Plants and animals will grow and change over time being separated from their parent species on Earth.  Entire ecosystems will develop on their own trajectory, separate from all life on Earth.  Over the 1,000 year period Mars will be turned from a vast desert with a coral sky into a bountiful planet full of life with a beautiful blue sky.  It may look similar to Earth, but the inhabitants will become truly Martian.

Recently Dr. Zubrin spoke about the importance of humanity rallying from different countries to go together to Mars.  This is an important step in terraforming the planet.  We are all aware that people from all over the world may have important contributions to make to a manned mission to Mars.  Our lack of sociological maturity should not stand in the way of such a humanity altering event.  Borders on maps should not prevent the forward motion of science, technology, and exploration.  It is time to band together as Earthlings to accomplish this goal.  There is nothing beyond our technological ability to stop us from reaching Mars and settling there.  Terraforming is the next necessary step in this plan.

[Images: Wikipedia, NatGeo, NatGeo, NatGeo]

Categories
2013 Mars Society Convention Humans to Mars Inspiration Mars Red Planet Pen STEM University Rover Youth Rover

Rovers and Spaceships Everywhere! (Issue #23)

Rover and Engineering Design Competitions- Levels:  5th grade thru Undergraduate

By: Nicole Willett, Chuck McMurray and The Mars Society

The Mars Society is host to three (3) design challenges.  They range in age from middle school thru college level.  The middle and high school level challenge was launched at the 16th Annual Mars Society Convention this past August.  It is called the Youth Rover Challenge.  One of the undergraduate challenges is called the University Rover Challenge and it has had several very successful seasons so far.  The final challenge was also launched at the convention in August.  It is an international student design competition.

YRC2The Youth Rover Challenge (YRC) is a multi-tier robotics education development program that is hosted, sponsored and operated by The Mars Society. The program commenced on August 6th, 2013 to commemorate the one year anniversary of the landing of NASA’s Curiosity Rover.

YRC is a STEM related educational effort that is designed for schools and organizations with students or members in grades 5-12 to have the chance to build and compete at a global level with a LEGO Mindstorms NXT 2.0 based robotic rover and competition arena intended to simulate the surface of Mars. The sandbox where the robotic rover operates is intended to be replicated so participants can operate the competition locally at your school, home or club. The Rover built for the competition is pre-designed to accomplish specific experiments (tasks) similar to what Mars Rovers accomplish today on the surface of Mars and other harsh environments on remote places on Earth. The competition is operated on-site at your self-built sandbox and the final operation of the field tasks are then videotaped and sent to each teams personalized YRC site for submission. Teams that have submitted videos that show the final operation of the rover completing the tasks under a time limit are then ranked against other teams.  The YRC is designed to prepare students for the University Rover Challenge that has operated successfully for the last 7 years directed by The Mars Society.

The University Rover Challenge (URC) is the world’s premier robotics competition for college students.  The URC has officially kicked off its 2014 competition.  This competition challenges students to design and build the next generation of Mars rovers which will one day work alongside astronauts on the Red Planet.

URC2Teams spend the academic year designing, building and testing their robotic creations. They will compete at the Mars Desert Research Station (MDRS) in the remote, barren desert of southern Utah in late May, 2014. The challenge features multiple tasks, including an Equipment Servicing Task that incorporates inflatable structures, and a more aggressive incarnation of the popular Terrain Traversing Task.

URC is unique in the challenges that it presents to students. Interdisciplinary teams will tackle robotics, engineering and field science domains, while gaining real-world systems engineering and project management experience.  University teams interested in participating can view the URC2014 rules online. The official registration process will open in early November; however teams are encouraged to begin their work now.

The Mars Society recently announced the launch of an International Engineering Competition for student teams to propose design concepts for the architecture of the Inspiration Mars mission. The contest is open to university engineering student teams from anywhere in the world.

Insp marsInspiration Mars Executive Director Dennis Tito and Program Manager Taber MacCallum were present for the announcement. “Inspiration Mars is looking for the most creative ideas from engineers all over the world,” said Tito. “Furthermore, we want to engage the explorers of tomorrow with a real and exciting mission, and demonstrate what a powerful force space exploration can be in inspiring young people to develop their talent. This contest will accomplish both of those objectives.”

Insp mars shipThe requirement is to design a two-person Mars flyby mission for 2018 as cheaply, safely and simply as possible. All other design variables are open.  Alumni, professors and other university staff may participate as well, but the teams must be predominantly composed of and led by students. All competition presentations must be completed exclusively by students. Teams will be required to submit their design reports in writing by March 15, 2014. From there, a down-select will occur with the top 10 finalist teams invited to present and defend their designs before a panel of six judges chosen (two each) by the Mars Society, Inspiration Mars and NASA. The presentations will take place during a public event at NASA Ames Research Center in April 2014.

Designs will be evaluated using a scoring system, allocating a maximum of 30 points for cost, 30 points for technical quality of the design, 20 points for operational simplicity and 20 points for schedule with a maximum total of 100 points. The first place team will receive a prize of $10,000, an all-expenses paid trip to the 2014 International Mars Society Convention and a trophy to be presented by Dennis Tito at that event. Prizes of $5,000, $3,000, $2,000 and $1,000 will also be awarded for second through fifth place.  All designs submitted will be published, and Inspiration Mars will be given non-exclusive rights to make use of any ideas contained therein.

Commenting on the contest, Mars Society President Dr. Robert Zubrin said, “The Mars Society is delighted to lead this effort. This contest will provide an opportunity for legions of young engineers to directly contribute their talent to this breakthrough project to open the space frontier.”

For more information on any of the above competitions email us at info@marssociety.org.

[Images: Chuck McMurray, The Mars Society, Inspiration Mars]